
Size Matters: Improving the Performance of Small Files in HDFS ∗

Salman Niazi †, Seif Haridi, Jim Dowling
KTH - Royal Institute of Technology

{smkniazi, haridi, jdowling}@kth.se

The Hadoop Distributed File System (HDFS) [2] is widely
used as a storage platform for large volumes of data. A
metadata server, called the namenode, manages all of HDFS’
metadata. HDFS is primarily designed to provide streaming
access to large files, from many megabytes to gigabytes in
size. For large files, the cost of the metadata operations in
HDFS is amortized over the relatively long periods of time
spent reading or writing large files. However, for small files,
metadata processing time becomes a larger fraction of total
filesystem operation time (given the minimal time required to
read data blocks for small files from the datanodes). In many
production deployments of the HDFS, it has been observed
that 20% of the files in the system are less than 4 kilobytes
(KBs), and these files receive 20% of all the file system
operations, see Figure 1. As a result, HDFS clients experience
poor performance for small files in moderately sized/loaded
clusters, as the namenode becomes a bottleneck, increasing
metadata processing latency. We propose optimizing the file
system operations on small files by using stuffed inodes for
small files, in a version of HDFS with distributed metadata,
called HopsFS [1]. Inode stuffing is a technique that embeds
the data blocks of small files in the inodes’ metadata for low
latency file system operations.

1. Small Files in HopsFS
HopsFS is a drop-in replacement for HDFS that stores file
system metadata in a highly available, in-memory, distributed
relational database, called the MySQL Cluster. HopsFS
supports multiple stateless namenodes with concurrent access
to the in-memory file system metadata, enabling greater
than an order of magnitude higher throughput for metadata
operations as well as lower latency for large numbers of
concurrent clients.

In ongoing work on HopsFS, we are storing the data blocks
for small files in the database (on-disk) alongside the inodes’
metadata (in-memory). When a client contacts a HopsFS
namenode to read a small file, the namenode fetches the
metadata along with its data blocks from the database and
returns the file blocks to the client. This reduces read latency
as it removes a network round-trip to datanodes for each block
from the HDFS client protocol. While HopsFS’ metadata is
stored in-memory in the database, the data blocks are stored
on-disk in the database, ideally on Solid State Drives (SSDs).
SSDs enable lower latency and higher throughput access to
on-disk (database) data, as well as more cost-effective and
larger storage capacity for blocks compared to main memory.

∗ Funded by Swedish Foundation for Strategic Research project E2E-Clouds
† Salman Niazi is a PhD student and he will present the poster

 0

 0.2

 0.4

 0.6

 0.8

 1

1
 K

B

4
 K

B

5
 K

B

6
 K

B

8
 K

B

1
6
 K

B

3
2
 K

B

6
4
 K

B

1
0
0
 K

B

5
1
2
 K

B

1
 M

B

8
 M

B

6
4
 M

B

2
5
6
 M

B

1
 G

B

1
2
8
 G

B

C
D

F

File Size

Spotify HDFS File Distribution
Spotify HDFS File Operations Distribution

Yahoo HDFS File Distribution

Figure 1: Distribution of file sizes in HDFS at Spotify and Yahoo where 2̃0%
of files are smaller than 4KB.
Non-volatile memory, such as, Intel’s 3D XPoint is another
candidate technology for storing small files. To evaluate our
solution, we are working with operational traces for a HDFS
cluster at Spotify containing 357 million files, of which 71
million are smaller that 4KB in size. In Apache HDFS, these
files consume ≈ 800 GB of disk space with triple replication.
In HopsFS all the data blocks for the small files can easily be
stored in the distributed database along with the file system
metadata to provide low latency file system operations for
the small files. Following are some challenges introduced by
using embedded inodes for small files in HopsFS.
• HDFS Compatibility: Changes for handling small files

should not break HopsFS’ compatibility with HDFS
clients (which expect the data to reside on the datanodes).
To this end, HopsFS namenodes can act as datanodes,
serving blocks for small files to the file system clients
(block location transparency).

• Migrating Data between Different Storage Types:
When the size of a small file that is stored in the data-
base exceeds some threshold then the file is reliably and
safely moved to the datanodes and vice versa.

2. Preliminary Results
In our micro benchmarks we tested the performance of our
metadata back-end, a two-node MySQL Cluster database, as
a block service. Each database node had one PCI Express
SSD, that stored the on-disk tables. Despite our small setup
we were able to perform 25,000 4KB random file block writes
and 70,000 4KB random file block reads per second. With a
bigger database cluster and more SSDs the performance is
expected to increase linearly. These results give us confidence
to further develop HopsFS to store both small files for a
Spotify-Yahoo type workload and the in-memory metadata
in the same database back-end.

References
[1] S. Niazi, M. Ismail, S. Haridi, J. Dowling, S. Grohsschmiedt, and M. Ronström.

Hopsfs: Scaling hierarchical file system metadata using newsql databases. In 15th
USENIX Conference on File and Storage Technologies (FAST 17), pages 89–104,
Santa Clara, CA, 2017. USENIX Association.

[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed file
system. In Proceedings of the 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), MSST ’10, Washington, DC, USA, 2010.

 Size Matters: Improving the Performance
of Small Files in HDFS

Salman Niazi1, Seif Haridi1,2, Jim Dowling1,2
1 KTH - Royal Institute of Technology

 2 RISE SICS - Swedish Institute of Computer Science

Introduction

The Hadoop Distributed File System (HDFS) [1] is the most popular
open-source platform for storing large volumes of data. HDFS splits
files to large blocks that are replicated across multiple datanodes.
The file to block mapping is stored on single metadata server called
the namenode. HDFS is suitable for storing large files. File system
operations such as reading a writing files, require the file system
clients to first contact the namenode to fetch the location of the data
blocks, and then establish communication channels with the
datanodes to read/write the files. For large files, the overhead of
fetching the metadata and establishing communication channels
with the datanodes is amortized over the relatively long periods of
time spend in reading and writing large files. For small files this
overhead is significantly more than the time required to read/write
the actual file blocks. For HDFS the problem is compounded by the
fact that it only supports single active namenode which becomes
performance bottleneck in the presence of large number of small
files.

In many production deployments of the HDFS, it has been
observed that 20% of the files in the system are less than 4
kilobytes (KBs), and these files receive 20% of all the file system
operations, see figure below. As a result, HDFS clients experience
poor performance for small files in moderately sized/loaded
clusters, as the namenode becomes a bottleneck, increasing
metadata processing latency.

HopsFS [2] is a drop-in replacement for HDFS that stores file
system metadata in a highly available, in-memory, distributed
relational database, called the MySQL Cluster. HopsFS supports
multiple stateless namenodes with concurrent access to the in-
memory file system metadata, enabling greater than an order of
magnitude higher throughput for metadata operations as well as
lower latency for large numbers of concurrent clients.

HopsFS is a next generation distribution of the Hadoop Distributed File System
(HDFS). HopsFS can perform more than a million file system operations

per second. Contrary to HDFS, which is only suitable for storing large files,
HopsFS can efficiently handles both large and small files. HopsFS uses

Inode stuffing technique to embed small files data with the metadata that
significantly improves the performance of the small files.

HopsFS Architecture

HopsFS

HDFS Files and FS Operations Distribution

Distribution of file sizes and file system operations in HDFS clusters at Spotify
and Yahoo. At Spotify and Yahoo ≈20% of files are smaller than 4KB and

these small files receive ≈20% of all the file system operations.

Register on http://hops.site to try Hops Hadoop distribution on our cloud for free.

By storing the file system metadata in an external distributed
database, HopsFS can easily handle large amount of file system
metadata. In ongoing work on HopsFS, we are using inode stuffing
technique, that is, storing the data blocks for small files in the
database (on-disk) alongside the inodes’ metadata (in-memory).
When a client contacts a HopsFS namenode to read a small file,
the namenode fetches the metadata along with its data blocks from
the database and returns the file blocks to the client. This reduces
read latency of the file system operation as it removes multiple
network round-trip to datanodes for each block from the HDFS
client protocol. While HopsFS’ metadata is stored in-memory in the
database, the data blocks are stored on-disk in the database,
ideally on Solid State Drives (SSDs) . Non-volatile memory, such
as, Intel’s 3D XPoint is another candidate technology for storing
small files.

HopsFS Architecture

HopsFS supports multiple stateless namenodes. In HopsFS large files are
split into blocks that are replicated across multiple datanodes. The metadata
for the entire file system along with the data blocks for all the small files is
stored in the distributed database. Storing the file blocks of small files with the
metadata improves the performance of the file system operations.

 Namenodes

Datanodes

DN 1 DN 2 DN 3 DN N

NN 1 NN 2 NN 3 NN N

MySQL Cluster

HopsFS
/HDFS
Clients

Fi
le

 S
ys

te
m

 M
et

ad
at

a
La

rg
e

l f
ile

s
da

ta
 b

lo
ck

s

Results

In our micro benchmarks we tested the performance of our
metadata backend, a two-node MySQL Cluster database, as a
block service. Each database node had one PCI Express SSD, that
stored the on-disk tables. Despite our small setup we were able to
perform 25,000 4KB random file block writes and 70,000 4KB
random file block reads per second. With a bigger database cluster
and more SSDs the performance is expected to increase linearly.

References
[1] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed file system. In Proceedings of the 2010
IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), MSST ’10, Washington, DC, USA, 2010. IEEE
Computer Society.
[2] Salman Niazi, Mahmoud Ismail, Seif Haridi, Jim Dowling, Steffen Grohsschmiedt, and Mikael Ronström. HopsFS:
Scaling hierarchical file system metadata using newsql databases. In 15th USENIX Conference on File and Storage
Technologies (FAST 2017), pages 89–104, Santa Clara, California, 2017. USENIX Association.

Sm
al

l f
ile

s
D

at
a

bl
oc

ks

