
H

HopsFS: Scaling Hierarchical
File System Metadata Using
NewSQL Databases

Salman Niazi, Mahmoud Ismail, Seif Haridi, and
Jim Dowling
KTH – Royal Institute of Technology,
Stockholm, Sweden

Definition

Modern NewSQL database systems can be used
to store fully normalized metadata for distributed
hierarchical file systems, and provide high
throughput and low operational latencies for the
file system operations.

Introduction

For many years, researchers have investigated
the use of database technology to manage file
system metadata, with the goal of providing ex-
tensible typed metadata and support for fast,
rich metadata search. However, previous attempts
failed mainly due to the reduced performance
introduced by adding database operations to the
file system’s critical path. However, recent im-
provements in the performance of distributed in-
memory online transaction processing databases
(NewSQL databases) led us to reinvestigate the
possibility of using a database to manage file

system metadata, but this time for a distributed,
hierarchical file system, the Hadoop file sys-
tem (HDFS). The single-host metadata service
of HDFS is a well-known bottleneck for both
the size of HDFS clusters and their throughput.
In this entry, we characterize the performance
of different NewSQL database operations and
design the metadata architecture of a new drop-in
replacement for HDFS using, as far as possible,
only those high-performance NewSQL database
access patterns. Our approach enabled us to scale
the throughput of all HDFS operations by an
order of magnitude.

HopsFS vs. HDFS
In both systems, namenodes provide an API for
metadata operations to the file system clients,
see Fig. 1. In HDFS, an active namenode (ANN)
handles client requests, manages the metadata
in memory (on the heap of a single JVM), logs
changes to the metadata to a quorum of journal
servers, and coordinates repair actions in the
event of failures or data corruption. A standly
namenode asynchronously pull the metadata
changes from the journal nodes and applies
the changes to its in memeory metadata. A
ZooKeeper service is used to signal namenode
failures, enabling both agreement on which
namenode is active as well as failover from active
to standby.

In HopsFS, namenodes are stateless servers
that handle client requests and process the
metadata that is stored in an external distributed
database, NDB in our case. The internal

© Springer International Publishing AG 2018
S. Sakr, A. Zomaya (eds.), Encyclopedia of Big Data Technologies,
https://doi.org/10.1007/978-3-319-63962-8_146-1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63962-8_1&domain=pdf
https://doi.org/10.1007/978-3-319-63962-8_146-1


2 HopsFS: Scaling Hierarchical File System Metadata Using NewSQL Databases

HopsFS: Scaling Hierarchical File System Metadata
Using NewSQL Databases, Fig. 1 In HDFS, a single
namenode manages the namespace metadata. For high
availability, a log of metadata changes is stored on a set
of journal nodes using quorum-based replication. The log
is subsequently replicated asynchronously to a standby

namenode. In contrast, HopsFS supports multiple stateless
namenodes and a single leader namenode that all access
metadata stored in transactional shared memory (NDB). In
HopsFS, leader election is coordinated using NDB, while
ZooKeeper coordinates leader election for HDFS

management (housekeeping) operations must
be coordinated among the namenodes. HopsFS
solves this problem by electing a leader namen-
ode that is responsible for the housekeeping.
We use the database as a shared memory to
implement a leader election and membership
management service (Salman Niazi et al. 2015;
Guerraoui and Raynal 2006).

In both HDFS and HopsFS, datanodes are
connected to all the namenodes. Datanodes pe-
riodically send a heartbeat message to all the
namenodes to notify them that they are still alive.
The heartbeat also contains information such as
the datanode capacity, its available space, and
its number of active connections. Heartbeats up-
date the list of datanode descriptors stored at
namenodes. The datanode descriptor list is used
by namenodes for future block allocations, and it
is not persisted in either HDFS or HopsFS, as it
is rebuilt on system restart using heartbeats from
datanodes.

HopsFS clients support random, round-robin,
and sticky policies to distribute the file system
operations among the namenodes. If a file system

operation fails, due to namenode failure or over-
loading, the HopsFS client transparently retries
the operation on another namenode (after backing
off, if necessary). HopsFS clients refresh the
namenode list every few seconds, enabling new
namenodes to join an operational cluster. HDFS
v2.X clients are fully compatible with HopsFS,
although they do not distribute operations over
namenodes, as they assume there is a single active
namenode.

MySQL’s NDB Distributed Relational
Database

HopsFS uses MySQL’s Network Database
(NDB) to store the file system metadata.
NDB is an open-source, real-time, in-memory,
shared nothing, distributed relational database
management system.

NDB cluster consists of three types of nodes:
NDB datanodes that store the tables, management
nodes, and database clients; see Fig. 3.



HopsFS: Scaling Hierarchical File System Metadata Using NewSQL Databases 3

H

The management nodes are only used to dis-
seminate the configuration information and to
detect network partitions. The client nodes access
the database using the SQL interface via MySQL
Server or using the native APIs implemented in
C++, Java, JPA, and JavaScript/Node.js.

Figure 3 shows an NDB cluster setup consist-
ing of four NDB datanodes. Each NDB datanode
consists of multiple transaction coordinator (TC)
threads, which are responsible for performing
two-phase commit transactions; local data man-
agement threads (LDM), which are responsible
for storing and replicating the data partitions
assigned to the NDB datanode; send and receive
threads, which are used to exchange the data
between the NDB datanodes and the clients; and
IO threads which are responsible for performing
disk IO operations.

MySQL Cluster horizontally partitions the ta-
bles, that is, the rows of the tables are uniformly
distributed among the database partitions stored
on the NDB datanodes. The NDB datanodes are
organized into node replication groups of equal
sizes to manage and replicate the data partitions.
The size of the node replication group is the
replication degree of the database. In the example
setup, the NDB replication degree is set to two
(default value); therefore, each node replication
group contains exactly two NDB datanodes. The
first replication node group consists of NDB
datanodes 1 and 2, and the second replication
node group consists of NDB datanodes 3 and 4.
Each node group is responsible for storing and

replicating all the data partitions assigned to the
NDB datanodes in the replication node group.

By default, NDB hashes the primary key
column of the tables to distribute the table’s
rows among the different database partitions.
Figure 3 shows how the inodes table for the
namespace shown in Fig. 2 is partitioned and
stored in the NDB cluster database. In production
deployments each NDB datanode may store
multiple data partitions, but, for simplicity,
the datanodes shown in Fig. 3 store only one
data partition. The replication node group 1 is
responsible for storing and replicating partitions
1 and 2 of the inodes’ table. The primary replicas
of partition 1 is stored on the NDB datanode 1,
and the replica of the partition 1 is stored on
the other datanode of the same replication node
group, that is, NDB datanode 2. For example,
the NDB datanode 1 is responsible for storing a
data partition that stores the lib, conf, and libB
inodes, and the replica of this data partition is
stored on NDB datanode 2. NDB also supports
user-defined partitioning of the stored tables,
that is, it can partition the data based on a user-
specified table column. User-defined partitioning
provides greater control over how the data is
distributed among different database partitions,
which helps in implementing very efficient
database operations.

NDB only supports read�commit ted trans-
action isolation level which is not sufficient for
implementing practical applications. However,
NDB supports row-level locking which can be
used to isolate transactions operating on the same

HopsFS: Scaling
Hierarchical File System
Metadata Using NewSQL
Databases, Fig. 2 A
sample file system
namespace. The diamond
shapes represent directories
and the circles represent
files



4 HopsFS: Scaling Hierarchical File System Metadata Using NewSQL Databases

HopsFS: Scaling Hierarchical File System Metadata
Using NewSQL Databases, Fig. 3 System architecture
diagram of MySQL’s Network Database (NDB) cluster.

The NDB cluster consists of three types of nodes, that
is, database clients, NDB management nodes, and NDB
database datanodes

datasets. NDB supports exclusive (write) locks,
shared (read) locks, and read � commit ted
(read the last committed value) locks. Using these
locking primitives, HopsFS isolates different file
system operations trying to mutate the same
subset of inodes.

Types of Database Operations
A transactional file system operation consists
of three distinct phases. In the first phase, all
the metadata that is required for the file sys-
tem operation is read from the database; in the
second phase, the operation is performed on the
metadata; and in the last phase, all the modified
metadata (if any) is stored back in the database.
As the latency of the file system operation greatly
depends on the time spent in reading and writing
the data, therefore, it is imperative to understand
the latency and computational cost of different
types of database operations, used to read and
update the stored data, in order to understand
how HopsFS implements low-latency scalable
file system operations. The data can be read
using four different types of database operations,

such as primary key, partition-pruned index scan,
distributed index scan, and distributed full ta-
ble scan operations. NDB also supports user-
defined data partitioning and data distribution-
aware transactions to reduce the latency of the
distributed transactions. A brief description of
these operations is as follows:

Application-Defined Partitioning (ADP)
NDB allows developers to override the default
partitioning scheme for the tables, enabling a
fine-grained control on how the tables’ data is
distributed across the data partitions. HopsFS
leverage this feature, for example, the inodes
table is partitioned by the parent inode ID, that
is, all immediate children of a directory reside on
the same database partition, enabling an efficient
directory listing operation.

Distribution-Aware Transactions (DAT)
NDB supports distribution-aware transactions
by specifying a transaction hint at the start of
the transaction. This enlists the transaction with a
transaction coordinator on the database node that



HopsFS: Scaling Hierarchical File System Metadata Using NewSQL Databases 5

H

holds the data required for the transaction, which
reduces the latency of the database operation.
The choice of the transaction hint is based on
the application-defined partitioning scheme.
Incorrect hints do not affect the correctness of
the operation, since the transaction coordinator
(TC) will route the requests to different NDB
datanode that holds the data; however, it will
incur additional network traffic.

Primary Key (PK) Operation
PK operation is the most efficient operation
in NDB that reads/writes/updates a single row
stored in a database shard.

Batched Primary Key Operations
Batch operations use batching of PK operations
to enable higher throughput while efficiently us-
ing the network bandwidth.

Partition-Pruned Index Scan (PPIS)
PPIS is a distribution-aware operation that
exploits the distribution-aware transactions
and application-defined partitioning features
of NDB, to implement a scalable index scan
operation such that the scan operation is
performed on a single database partition.

Distributed Index Scan (DIS)
DIS is an index scan operation that executes on
all database shards. It is not a distribution-aware
operation, causing it to become increasingly slow
for increasingly larger clusters.

Distributed Full Table Scan (DFTS)
DF TS operations are not distribution aware and
do not use any index; thus, they read all the rows
for a table stored in all database shards. DFTS
operations incur high cpu and network costs;
therefore, these operations should be avoided in
implementing any database application.

Comparing Different Database Operations
Figure 4 shows the comparison of the throughput
and latency of different database operations.
These micro benchmarks were performed on
a four-node NDB cluster setup running NDB
version 7.5.6. All the experiments were run on

premise using Dell PowerEdge R730xd servers
(Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40 GHz,
256 GB RAM, 4 TB 7200 RPM HDD) connected
using a single 10 GbE network adapter. We ran
400 concurrent database clients, which were
uniformly distributed across 20 machines. The
experiments are repeated twice. The first set of
experiments consist of read-only operations, and
the second set of experiments consist of read-
write operations where all the data that is read is
updated and stored back in the database.

Distributed full table scan operations and dis-
tributed index scan operations do not scale, as
these operations have the lowest throughput and
highest end-to-end latency among all the database
operations; therefore, there operations must be
avoided in implementing file system operations.
Primary key, batched primary key operations,
and partition-pruned index scan operations are
scalable database operations that can deliver very
high throughput and have low end-to-end opera-
tional latency.

The design of the database schema, that is,
how the data is laid out in different tables, the
design of the primary keys of the tables, type-
s/number of indexes for different columns of
the tables, and data partitioning scheme for the
tables, plays a significant role in choosing an
appropriate (efficient) database operation to read-
/update the data, which is discussed in detail in
the following sections.

HopsFS Distributed Metadata

In HopsFS the metadata is stored in the database
in normalized form, that is, instead of storing the
full file paths with each inode as in Thomson
and Abadi (2015), HopsFS stores individual file
path components. Storing the normalized data
in the database has many advantages, such as
rename file system operation can be efficiently
implemented by updating a single row in the
database that represents the inode. If complete
file paths are stored for each inode, then it would
not only consume significant amount of precious
database storage, but also, a simple directory



6 HopsFS: Scaling Hierarchical File System Metadata Using NewSQL Databases

HopsFS: Scaling
Hierarchical File System
Metadata Using NewSQL
Databases, Fig. 4 The
comparison of the
throughput and latency of
different database
operations. (a) Read-only
operations’ throughput. (b)
Read-only operations’
latency. (c) Read-write
operations’ throughput. (d)
Read-write operations’
latency

0.0

200.0k

400.0k

600.0k

800.0k

1.0M

1.2M

1.4M

1.6M

1 Row 5 Rows 10 Rows
Th

ro
ug

hp
ut

Row(s) read in each operation

PK
Batch
PPIS

DIS
DFTS

(a) Read only operations’ throughput

 0.1

 1

 10

 100

 1000

 10000

1 Row 5 Rows 10 Rows

La
te

nc
y 

(m
s)

 L
og

 S
ca

le
 

Row(s) read in each operation

PK
Batch
PPIS

DIS
DFTS

(b) Read only operations’ latency

0.0

50.0k

100.0k

150.0k

200.0k

250.0k

300.0k

350.0k

1 Row 5 Rows 10 Rows

Th
ro

ug
hp

ut

Row(s) read/updated in each operation

PK
Batch
PPIS

DIS
DFTS

(c) Read-Write operations’ throughput

 1

 10

 100

 1000

 10000

1 Row 5 Rows 10 Rows

La
te

nc
y 

(m
s)

 L
og

 S
ca

le
 

Row(s) read/updated in each operation

PK
Batch
PPIS

DIS
DFTS

(d) Read-Write operations’ latency



HopsFS: Scaling Hierarchical File System Metadata Using NewSQL Databases 7

H

HopsFS: Scaling Hierarchical File System Metadata Using NewSQL Databases, Fig. 5 Entity relational diagram
for HopsFS schema

rename operation would require updating the file
paths for all the children of that directory subtree.

Key tables in HopsFS metadata schema are
shown in the entity relational (ER) diagram in
Fig. 5. The inodes for files and directories are
stored in the inodes table. Each inode is repre-
sented by a single row in the table, which also
stores information such as inode ID, name, parent
inode ID, permission attributes, user ID, and size.
As HopsFS does not store complete file paths
with each inode, the inode’s parent ID is used to
traverse the inodes table to discover the complete
path of the inode. The extended metadata for the
inodes is stored in the extended metadata entity.
The quota table stores information about disk
space consumed by the directories with quota
restrictions enabled. When a client wants to up-

date a file, then it obtains a lease on the file, and
the file lease information is stored in the lease
table. Small files that are few kilobytes in size
are stored in the database for low-latency access.
Such files are stored in the small files’ data blocks
tables.

Non-empty files may contain multiple blocks
stored in the blocks table. The location of
each replica of the block is stored in the
replicas table. During its life cycle a block
goes through various phases. Blocks may be
under-replicated if a datanode fails, and such
blocks are stored in the under-replicated blocks
table. HopsFS periodically checks the health
of all the data blocks. HopsFS ensures that the
number of replicas of each block does not fall
below the threshold required to provide high



8 HopsFS: Scaling Hierarchical File System Metadata Using NewSQL Databases

availability of the data. The replication monitor
sends commands to datanodes to create more
replicas of the under-replicated blocks. The
blocks undergoing replication are stored in the
pending replication blocks table. Similarly, a
replica of a block has various states during its
life cycle. When a replica gets corrupted due
to disk errors, it is moved to the corrupted
replicas table. The replication monitor will
create additional copies of the corrupt replicas
by copying healthy replicas of the corresponding
blocks, and the corrupt replicas are moved to
invalidated replicas table for deletion. Similarly,
when a file is deleted, the replicas of the blocks
belonging to the file are moved to the invalidated
replicas table. Periodically the namenodes read
the invalided replicas tables and send commands
to the datanodes to permanently remove the
replicas from the datanodes’ disk. Whenever a
client writes to a new block’s replica, this replica
is moved to the replica under construction table.
If too many replicas of a block exist (e.g., due to
recovery of a datanode that contains blocks that
were re-replicated), the extra copies are stored in
the excess replicas table.

Metadata Partitioning
The choice of partitioning scheme for the hier-
archical namespace is a key design decision for
distributed metadata architectures. HopsFS uses
user-defined partitioning for all the tables stored
in NDB. We base our partitioning scheme on
the expected relative frequency of HDFS oper-
ations in production deployments and the cost
of different database operations that can be used
to implement the file system operations. Read-
only metadata operations, such as list, stat, and
file read operations, alone account for �95% of
the operations in Spotify’s HDFS cluster (Niazi
et al. 2017). Based on the micro benchmarks of
different database operations, we have designed
the metadata partitioning scheme such that fre-
quent file system operations are implemented
using the scalable database operations such as
primary key, batched primary key operations,
and partition-pruned index scan operations. Index
scans and full table scans are avoided, where

possible, as they touch all database partitions and
scale poorly.

HopsFS partitions inodes by their parents’
inode IDs, resulting in inodes with the same
parent inode being stored on the same database
partitions. That enables efficient implementation
of the directory listing operation. When listing
files in a directory, we use a hinting mechanism to
start the transaction on a transaction coordinator
located on the database partitions that holds the
child inodes for that directory. We can then use
a pruned index scan to retrieve the contents of
the directory locally. File inode-related metadata,
that is, blocks and replicas and their states, is
partitioned using the file’s inode ID. This results
in metadata for a given file all being stored in a
single database partition, again enabling efficient
file operations. Note that the file inode-related
entities also contain the inode’s foreign key (not
shown in the entity relational diagram Fig. 5) that
is also the partition key, enabling HopsFS to read
the file inode-related metadata using partition-
pruned index scans.

It is important that the partitioning scheme dis-
tribute the metadata evenly across all the database
partitions. Uneven distribution of the metadata
across all the database partitions leads to poor
performance of the database. It is not uncommon
for big data applications to create tens of millions
of files in a single directory (Ren et al. 2013;
Patil et al. 2007). HopsFS metadata partitioning
scheme does not lead to hot spots as the database
partition that contains the immediate children
(files and directories) of a parent directory only
stores the names and access attributes, while the
inode-related metadata (such as blocks, replicas,
and associated states) that comprises the majority
of the metadata is spread across all the database
partitions because it is partitioned by the inode
IDs of the files. For hot files/directories, that is,
file/directories that are frequently accessed by
many of concurrent clients, the performance of
the file system will be limited by the performance
of the database partitions that hold the required
data for the hot files/directories.



HopsFS: Scaling Hierarchical File System Metadata Using NewSQL Databases 9

H

HopsFS Transactional Operations

File system operations in HopsFS are divided into
two main categories, that is, non-recursive file
system operations that operate on a single file or
directory, also called inode operations, and re-
cursive file system operations that operate on di-
rectory subtrees which may contain large number
of descendants, also called subtree operations.
The file system operations are divided into these
two categories because databases, for practical
reasons, put a limit on the number of read and
write operations that can be performed in a single
database transaction, that is, a large file system
operation may take a long time to complete and
the database may timeout the transaction before
the operation successfully completes. For exam-
ple, creating a file, mkdir, or deleting file are
inode operations that read and update limited
amount of metadata in each transactional file
system operation. However, recursive file system
operations such as delete, move, chmod on large
directories may read and update millions of rows.
As subtree operations cannot be performed in
a single database operation, HopsFS breaks the
large file system operation into small transac-
tions. Using application-controlled locking for
the subtree operations, HopsFS ensures that the
semantics and consistency of the file system op-
eration remain the same as in HDFS.

Inode Hint Cache
In HopsFS all file system operations are path
based, that is, all file system operations operate on
file/directory paths. When a namenode receives a
file system operation, it traverses the file path to
ensure that the file path is valid and the client is
authorized to perform the given file system oper-
ation. In order to recursively resolve the file path,
HopsFS uses primary key operations to read each
constituent inode one after the other. HopsFS
partitions the inodes’ table using the parent ID
column, that is, the constituent inodes of the file
path may reside on different database partitions.
In production deployments, such as in case of
Spotify, the average file system path length is 7,
that is, on average it would take 7 round trips
to the database to resolve the file path, which

would increase the end-to-end latency of the file
system operation. However, if the primary keys of
all the constituent inodes for the path are known
to the namenode in advance, then all the inodes
can be read from the database in a single-batched
primary key operation. For reading multiple rows
batched primary key operations scale better than
iterative primary key operations and have lower
end-to-end latency. Recent studies have shown
that in production deployments, such as in Yahoo,
the file system access patterns follow a heavy-
tailed distribution, that is, only 3% of the files
account for 80% of file system operations (Abad
2014); therefore, it is feasible for the namenodes
to cache the primary keys of the recently accessed
inodes. The namenodes store the primary keys
of the inodes table in a local least recently used
(LRU) cache called the inodes hints cache. We
use the inode hint cache to resolve the frequently
used file paths using single-batch query. The
inodes cache does not require cache coherency
mechanisms to keep the inode cache consistent
across the namenodes because if the inodes hints
cache contains invalid primary keys, then the
batch operation would fail and then the namenode
will fall back to recursively resolving the file path
using primary key operations. After recursively
reading the path components from the database,
the namenodes also update the inode cache. Ad-
ditionally, only the move operation changes the
primary key of an inode. Move operations are
very tiny fraction of the production file system
workloads, such as at Spotify less than 2% of the
file system operations are file move operations.

Inode Operations
Inode operations go through the following
phases.

Pre-transaction Phase
• The namenode receives a file system operation

from the client.
• The namenode checks the local inode cache,

and if the file path components are found in
the cache, then it creates a batch operation to
read all file components.



10 HopsFS: Scaling Hierarchical File System Metadata Using NewSQL Databases

Transactional File System Operation
• The inodes cache is also used to set the parti-

tion key hint for the transactional file system
operation. The inode ID of the last valid path
component is used as partition key hint.

• The transaction is enlisted on the desired NDB
datanode according to the partition hint. If the
namenode is unable to determine the partition
key hint from the inode cache, then the trans-
action is enlisted on a random NDB datanode.

• The batched primary key operation is sent to
the database to read all the file path inodes.
If the batched primary key operation fail due
to invalid primary key(s), then the file path is
recursively resolved. After resolving the file
path components, the namenode also updates
the inode cache for future operations.

• The last inode in the file path is read us-
ing appropriate lock, that is, read-only file
system operation takes shared lock on the
inode, while file system operations that need
to update the inode take exclusive lock on the
inode.

• Depending on the file system operation, some
or all of the secondary metadata for the in-
ode is read using partition-pruned index scan
operations. The secondary metadata for an in-
ode includes quota, extended metadata, leases,
small files data blocks, blocks, replicas, etc.,
as shown in the entity relational diagram of
the file system; see Fig. 5.

• After all the data has been read from the
database, the metadata is stored in a per-
transaction cache. The file system operation is
performed, which reads and updates the data
stored in the per-transaction cache. All the
changes to the metadata are also stored in the
per-transaction cache.

• After the file system operations successfully
finish, all the metadata updates are sent to
the database to persist the changes for later
operations.

• If there are no errors, then the transaction is
committed; otherwise the transaction is rolled
back.

Post Transaction
• After the transactional file system operation

finishes, the results are sent back to the client.
• Additionally, the namenode also updates it

matrices about different statistics of the file
system operations, such as frequency of dif-
ferent types of file system operations and du-
ration of the operations.

Subtree Operations
Recursive file system operations that operate on
large directories are too large to fit in a single
database transaction, for example, it is not pos-
sible to delete hundreds of millions of files in a
single database transaction. HopsFS uses subtree
operations protocol to perform such large file sys-
tem operations. The subtree operations protocol
uses application-level locking to mark and isolate
inodes. HopsFS subtree operations are designed
in such a way that the consistency and operational
semantics of the file system operations remain
compatible with HDFS. The subtree operations
execute in three phases as described below.

Phase 1 – Locking the Subtree: In the first
phase, the directory is isolated using application-
level locks. Using an inode operation, an exclu-
sive lock is obtained for the directory, and the
subtree lock flag is set for the inode. The subtree
lock flag also contains other information, such
as the ID of the namenode that holds the lock,
the type of the file system operation, and the full
path of the directory. The flag is an indication
that all the descendants of the subtree are locked
with exclusive (write) lock. It is important to note
that during path resolution, inode and subtree
operations that encounter an inode with a subtree
lock turned on voluntarily abort the transaction
and wait until the subtree lock is removed.

Phase 2 – Quiescing the Subtree: Before
the subtree operation updates the descendants
of the subtree, it is imperative to ensure that
none of the descendants are being locked by
any other concurrent subtree or inode operation.
Setting the subtree lock before checking if any
other descendant directory is also locked for a
subtree operation can result in multiple active
subtree operations on the same inodes, which will



HopsFS: Scaling Hierarchical File System Metadata Using NewSQL Databases 11

H

compromise the consistency of the namespace.
We store all active subtree operations in a table
and query it to ensure that no subtree operations
are executing at lower levels of the subtree. In
a typical workload, this table does not grow too
large as subtree operations are usually only a tiny
fraction of all file system operations. Addition-
ally, we wait for all ongoing inode operations to
complete by taking and releasing database write
locks on all inodes in the subtree in the same
total order used to lock inode. This is repeated
down the subtree to the leaves, and a tree data
structure containing the inodes in the subtree is
built in memory at the namenode. The tree is later
used by some subtree operations, such as move
and delete operations, to process the inodes. If
the subtree operations protocol fails to quiesce
the subtree due to concurrent file system opera-
tions on the subtree, it is retried with exponential
backoff.

Phase 3 – Executing the FS Operation:
Finally, after locking the subtree and ensuring
that no other file system operation is operating
on the same subtree, it is safe to perform the
requested file system operation. In the last phase,
the subtree operation is broken into smaller op-
erations, which are run in parallel to reduce the
latency of the subtree operation. For example,
when deleting a large directory, starting from the
leaves of the directory subtree, the contents of the
directory is deleted in batches of multiple files.

Handling Failed Subtree Operation
As the locks for subtree operations are controlled
by the application (i.e., the namenodes), there-
fore, it is important that the subtree locks are
cleared when a namenode holding the subtree
lock fails. HopsFS uses lazy approach for clean-
ing the subtree locks left by the failed namenodes.
The subtree lock flag also contains information
about the namenode that holds the subtree lock.
Using the group membership service, the namen-
ode maintains a list of all the active namenodes
in the system. During the execution of the file
system operations, when a namenode encounters
an inode with a subtree lock flag set that does
not belong to any live namenode, then the subtree
operation flag is reset.

It is imperative that the failed subtree opera-
tions do not leave the file system metadata in an
inconsistent state. For example, the deletion of
the subtree progresses from the leaves to the root
of the subtree. If the recursive delete operation
fails, then the inodes of the partially deleted sub-
tree remain connected to the namespace. When a
subtree operation fails due to namenode failure,
then the client resubmits the operation to another
alive namenode to complete the file system oper-
ation.

Storing Small Files in the Database

HopsFS supports two file storage layers, in con-
trast to the single file storage service in HDFS,
that is, HopsFS can store data blocks on HopsFS
datanodes as well as in the distributed database.
Large files blocks are stored on the HopsFS
datanodes, while small files (<D 64 KB) are
stored in the distributed database. The technique
of storing the data blocks with the metadata is
also called inode stuffing. In HopsFS, an average
file requires 1.5 KB of metadata. As a rule of
thumb, if the size of a file is less than the size
of the metadata (in our case 1 KB or less), then
the data block is stored in memory with the meta-
data. Other small files are stored in on-disk data
tables. The latest solid-state drives (SSDs) are
recommended for storing small files data blocks
as typical workloads produce large number of
random reads/writes on disk for small amounts
of data.

Inode stuffing has two main advantages. First,
it simplifies the file system operations protocol
for reading/writing small files, that is, many net-
work round trips between the client and datan-
odes are avoided, significantly reducing the ex-
pected latency for operations on small files. Sec-
ond, it reduces the number of blocks that are
stored on the datanode and reduces the block
reporting traffic on the namenode. For example,
when a client sends a request to the namenode
to read a file, the namenode retrieves the file’s
metadata from the database. In case of a small
file, the namenode also fetches the data block
from the database. The namenode then returns



12 HopsFS: Scaling Hierarchical File System Metadata Using NewSQL Databases

the file’s metadata along with the data block
to the client. Compared to HDFS, this removes
the additional step of establishing a validated,
secure communication channel with the datan-
odes (Kerberos, TLS/SSL sockets, and a block
token are all required for secure client-datanode
communication), resulting in lower latencies for
file read operations (Salman Niazi et al. 2017).

Extended Metadata

File systems provide basic attributes for files/di-
rectories such as name, size, modification time,
etc. However, in many cases, users and adminis-
trators require the ability to tag files/directories
with extended attributes for later use. Moreover,
rich metadata has become an invaluable feature
especially with the continuous growth of data
volumes stored in scale-out file systems, such as
HopsFS. As discussed earlier HopsFS store all
the file system metadata in a database, where each
file/directory (inode) is identified by a primary
key. Therefore, creating an extended metadata
table with a foreign key to the inodes table should
be sufficient to ensure consistency and integrity
of the metadata and the extended metadata.

HopsFS offers two modes to store extended
metadata, that is, schema-based and schemaless
extended metadata. In the schema-based
approach, users have to create a predefined
schema for their extended metadata, similar to
information schema in database systems, and
then associate their data according to that schema.
The predefined schema enables validation of the
extended metadata before attaching them to the
inodes. On the other hand, in the schemaless
approach, users don’t have to create a predefined
schema beforehand; instead, they can attach any
arbitrary extended metadata that is stored in a
self-contained manner such as a JSON file.

Using either approach schema-based or
schemaless, users and administrators can tag
their files/directories with extended metadata and
then later query for the files/directories based on
the tags provided. For example, users can tag
files with a description field and later search for
the files that match (or partially match) a given

free-text query. Also, administrators could use the
basic attributes, for example, file size to list all the
big files in the cluster, or modification time to list
all files that have not been modified within the last
month. Depending on the queries pattern, it might
be efficient for some queries to run directly on
the metadata database, and for others especially
the free-text queries, to run on a specialized
free-text search engines. Also, the conventional
wisdom in database community has been that
there is no-size-fits-all solution. This encourages
the use of different storage engines according
to the query pattern needed that is known as a
polyglot persistence of the data. Therefore, the
metadata of the namespace should be replicated
into different engines to satisfy different query
requirements such as free-text, point, range, and
sophisticated join queries. We have developed a
databus system, called ePipe (Ismail et al. 2017),
that provides a strongly consistent replicated
metadata service as an extension to HopsFS and
that in real-time delivers file system metadata and
extended metadata to different storage engines.
Users and administrators can later query the
different storage engines according to their query
requirements.

Results

As HopsFS addresses how to scale out the meta-
data layer of HDFS, all our experiments are
designed to comparatively test the performance
and scalability of the namenode(s) in HDFS and
HopsFS. Most of the available benchmarking
utilities for Hadoop are MapReduce-based, pri-
marily designed to determine the performance
of a Hadoop cluster. These benchmarks are very
sensitive to the MapReduce subsystem and there-
fore are not suitable for testing the performance
and scalability of namenodes in isolation (Noll
2015). Inspired by the NNThroughputBenchmark
for HDFS and the benchmark utility designed to
test QFS (Ovsiannikov et al. 2013), we devel-
oped a distributed benchmark that spawns tens
of thousands of file system clients, distributed
across many machines, which concurrently ex-
ecute file system (metadata) operations on the



HopsFS: Scaling Hierarchical File System Metadata Using NewSQL Databases 13

H

0.0
100.0k
200.0k
300.0k
400.0k
500.0k
600.0k

1 5 10 15 20 25 30 35 40 45 50 55 60

59.1X Improvemet

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

Number of Namenodes

HopsFS
HDFS

(a) Mkdir

0.0
50.0k

100.0k
150.0k
200.0k
250.0k

1 5 10 15 20 25 30 35 40 45 50 55 60

56.2X Im
provemet

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

Number of Namenodes

HopsFS
HDFS

(b) Create Empty File

0.0
50.0k

100.0k
150.0k
200.0k
250.0k

1 5 10 15 20 25 30 35 40 45 50 55 60

49.0X Im
provemet

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

Number of Namenodes

HopsFS
HDFS

(c) Append File

0.0
200.0k
400.0k
600.0k
800.0k

1.0M
1.2M
1.4M
1.6M

1 5 10 15 20 25 30 35 40 45 50 55 60

16.8X Im
provemet

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

Number of Namenodes

HopsFS
HDFS

(d) Read File (get Block Locations)

0.0
200.0k
400.0k
600.0k
800.0k

1.0M
1.2M
1.4M
1.6M
1.8M

1 5 10 15 20 25 30 35 40 45 50 55 60

18.2X Im
provemet

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

Number of Namenodes

HopsFS
HDFS

(e) Stat Dir

0.0
200.0k
400.0k
600.0k
800.0k

1.0M
1.2M
1.4M
1.6M
1.8M

1 5 10 15 20 25 30 35 40 45 50 55 60

17.2X Im
provemet

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

Number of Namenodes

HopsFS
HDFS

(f) Stat File

0.0
100.0k
200.0k
300.0k
400.0k
500.0k
600.0k
700.0k

1 5 10 15 20 25 30 35 40 45 50 55 60

10.7X Im
provemet

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

Number of Namenodes

HopsFS
HDFS

(g) List Dir

0.0
200.0k
400.0k
600.0k
800.0k

1.0M
1.2M
1.4M
1.6M

1 5 10 15 20 25 30 35 40 45 50 55 60

15.7X Im
provemet

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

Number of Namenodes

HopsFS
HDFS

(h) List File

0.0
50.0k

100.0k
150.0k
200.0k
250.0k
300.0k
350.0k

1 5 10 15 20 25 30 35 40 45 50 55 60

39.6X Im
provemet

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

Number of Namenodes

HopsFS
HDFS

(i) Rename File

0.0
100.0k
200.0k
300.0k
400.0k
500.0k
600.0k

1 5 10 15 20 25 30 35 40 45 50 55 60

56.5X Im
provemet

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

Number of Namenodes

HopsFS
HDFS

(j) Delete File

0.0
50.0k

100.0k
150.0k
200.0k
250.0k
300.0k
350.0k
400.0k

1 5 10 15 20 25 30 35 40 45 50 55 60

39.3X Im
provemet

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

Number of Namenodes

HopsFS
HDFS

(k) Chmod Dir

0.0
100.0k
200.0k
300.0k
400.0k
500.0k
600.0k
700.0k

1 5 10 15 20 25 30 35 40 45 50 55 60

67.4X Im
provemet

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

Number of Namenodes

HopsFS
HDFS

(l) Chmod File

0.0
50.0k

100.0k
150.0k
200.0k
250.0k
300.0k
350.0k
400.0k

1 5 10 15 20 25 30 35 40 45 50 55 60

37.2X Im
provemet

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

Number of Namenodes

HopsFS
HDFS

(m) Chown Dir

0.0
20.0k
40.0k
60.0k
80.0k

100.0k
120.0k
140.0k
160.0k
180.0k
200.0k
220.0k

1 5 10 15 20 25 30 35 40 45 50 55 60

21.2X Im
provemet

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

Number of Namenodes

HopsFS
HDFS

(n) Chown File

HopsFS: Scaling Hierarchical File System Metadata
Using NewSQL Databases, Fig. 6 Throughput of differ-
ent file system operations in HopsFS and HDFS. As HDFS
only supports only one active namenode, the throughput
for HDFS file system operations are represented by the

horizontal (blue) lines. (a) Mkdir. (b) Create empty file.
(c) Append file. (d) Read file (getBlockLocations). (e) Stat
dir. (f) Stat file. (g) List dir. (h) List file. (i) Rename file.
(j) Delete file. (k) Chmod dir. (l) Chmod file. (m) Chown
dir. (n) Chown file



14 HopsFS: Scaling Hierarchical File System Metadata Using NewSQL Databases

namenode(s). The benchmark utility can test the
performance of both individual file system oper-
ations and file system workloads based on indus-
trial workload traces. The benchmark utility is
open source (Hammer-Bench 2016) and the ex-
periments described here can be fully reproduced
on AWS using Karamel and the cluster definitions
found in Hammer-Bench (2016).

We ran all the experiments on premise us-
ing Dell PowerEdge R730xd servers (Intel(R)
Xeon(R) CPU E5-2620 v3 @ 2.40 GHz, 256 GB
RAM, 4 TB 7200 RPM HDDs) connected using
a single 10 GbE network adapter. Unless stated
otherwise, NDB, version 7.5.3, was deployed
on 12 nodes configured to run using 22 threads
each, and the data replication degree was 2. All
other configuration parameters were set to default
values. Moreover, in our experiments Apache
HDFS, version 2.7.2, was deployed on 5 servers.
We did not colocate the file system clients with
the namenodes or with the database nodes. As
we are only evaluating metadata performance, all
the tests created files of zero length (similar to
the NNThroughputBenchmark Shvachko 2010).
Testing with non-empty files requires an order of
magnitude more HDFS/HopsFS datanodes, and
provides no further insight.

Figure 6 shows the throughput of different file
system operations as a function of number of
namenodes in the system. HDFS supports only
one active namenode; therefore, the throughput of
the file system is represented by (blue) horizontal
line in the graphs. From the graphs it is quite
clear that HopsFS outperforms HDFS for all file
system operations and has significantly better
performance than HDFS for the most common
file system operations. For example, HopsFS im-
proves the throughput of create file and read file
operations by 56:2X and 16:8X , respectively.

Additional experiments for industrial work-
loads, write intensive synthetic workloads, meta-
data scalability, and performance under failures
are available in HopsFS papers (Niazi et al. 2017;
Ismail et al. 2017).

Conclusions

In this entry, we introduced HopsFS, an open-
source, highly available, drop-in alternative for
HDFS that provides highly available metadata
that scales out in both capacity and throughput
by adding new namenodes and database nodes.
We designed HopsFS file system operations to be
deadlock-free by meeting the two preconditions
for deadlock freedom: all operations follow the
same total order when taking locks, and locks
are never upgraded. Our architecture supports
a pluggable database storage engine, and other
NewSQL databases could be used, providing they
have good support for cross-partition transactions
and techniques such as partition-pruned index
scans. Most importantly, our architecture now
opens up metadata in HDFS for tinkering: custom
metadata only involves adding new tables and
cleaner logic at the namenodes.

Cross-References

�Distributed File Systems
� In-memory Transactions
�Hadoop

References

Abad CL (2014) Big data storage workload characteriza-
tion, modeling and synthetic generation. PhD thesis,
University of Illinois at Urbana-Champaign

Guerraoui R, Raynal M (2006) A leader election protocol
for eventually synchronous shared memory systems.
In: The fourth IEEE workshop on software technolo-
gies for future embedded and ubiquitous systems, 2006
and the 2006 second international workshop on collab-
orative computing, integration, and assurance, SEUS
2006/WCCIA, pp 6–

Hammer-Bench (2016) Distributed metadata benchmark
to HDFS. https://github.com/smkniazi/hammer-bench.
[Online; Accessed 1 Jan 2016]

Ismail M, Gebremeskel E, Kakantousis T, Berthou G,
Dowling J (2017) Hopsworks: improving user ex-
perience and development on hadoop with scalable,
strongly consistent metadata. In: 2017 IEEE 37th inter-
national conference on distributed computing systems
(ICDCS), pp 2525–2528

http://link.springer.com/Distributed File Systems
http://link.springer.com/In-memory Transactions
http://link.springer.com/Hadoop
https://github.com/smkniazi/hammer-bench


HopsFS: Scaling Hierarchical File System Metadata Using NewSQL Databases 15

H

Ismail M, Niazi S, Ronström M, Haridi S, Dowling J
(2017) Scaling HDFS to more than 1 million operations
per second with HopsFS. In: Proceedings of the
17th IEEE/ACM international symposium on cluster,
cloud and grid computing, CCGrid ’17. IEEE Press,
Piscataway, pp 683–688

Niazi S, Haridi S, Dowling J (2017) Size mat-
ters: improving the performance of small files
in HDF. https://eurosys2017.github.io/assets/data/
posters/poster09-Niazi.pdfl. [Online; Accessed 30 June
2017]

Niazi S, Ismail M, Haridi S, Dowling J, Grohsschmiedt
S, Ronström M (2017) Hopsfs: scaling hierarchical
file system metadata using newsql databases. In:
15th USENIX conference on file and storage technolo-
gies (FAST’17). USENIX Association, Santa Clara,
pp 89–104

Noll MG (2015) Benchmarking and stress testing
an hadoop cluster with TeraSort. TestDFSIO &
Co. http://www.michael-noll.com/blog/2011/04/09/
benchmarking-and-stress-testing-an-hadoop-cluster-
with-terasort-testdfsio-nnbench-mrbench/. [Online;
Accessed 3 Sept 2015]

Ovsiannikov M, Rus S, Reeves D, Sutter P, Rao S, Kelly J
(2013) The quantcast file system. Proc VLDB Endow
6(11):1092–1101

Patil SV Gibson GA Lang S, Polte M (2007) GIGA+: scal-
able directories for shared file systems. In: Proceedings
of the 2nd international workshop on petascale data
storage: held in conjunction with supercomputing ’07,
PDSW ’07. ACM, New York, pp 26–29

Ren K, Kwon Y, Balazinska M, Howe B (2013) Hadoop’s
adolescence: an analysis of hadoop usage in scientific
workloads. Proc VLDB Endow 6(10):853–864

Salman Niazi GB, Ismail M, Dowling J (2015) Leader
election using NewSQL systems. In: Proceeding of
DAIS 2015. Springer, pp 158–172

Shvachko KV (2010) HDFS scalability: the limits to
growth. Login Mag USENIX 35(2):6–16

Thomson A, Abadi DJ (2015) CalvinFS: consistent WAN
replication and scalable metadata management for dis-
tributed file systems. In: 13th USENIX conference
on file and storage technologies (FAST 15). USENIX
Association, Santa Clara, pp 1–14

https://eurosys2017.github.io/assets/data/posters/poster09-Niazi.pdfl
https://eurosys2017.github.io/assets/data/posters/poster09-Niazi.pdfl
http://www.michael-noll.com/blog/2011/04/09/benchmarking-and-stress-testing-an-hadoop-cluster-with-terasort-testdfsio-nnbench-mrbench/
http://www.michael-noll.com/blog/2011/04/09/benchmarking-and-stress-testing-an-hadoop-cluster-with-terasort-testdfsio-nnbench-mrbench/
http://www.michael-noll.com/blog/2011/04/09/benchmarking-and-stress-testing-an-hadoop-cluster-with-terasort-testdfsio-nnbench-mrbench/

	HopsFS: Scaling Hierarchical File System Metadata Using NewSQL Databases
	Definition
	Introduction
	HopsFS vs. HDFS

	MySQL's NDB Distributed Relational Database
	Types of Database Operations
	Application-Defined Partitioning (ADP)
	Distribution-Aware Transactions (DAT)
	Primary Key (PK) Operation
	Batched Primary Key Operations
	Partition-Pruned Index Scan (PPIS)
	Distributed Index Scan (DIS)
	Distributed Full Table Scan (DFTS)
	Comparing Different Database Operations


	HopsFS Distributed Metadata
	Metadata Partitioning

	HopsFS Transactional Operations
	Inode Hint Cache
	Inode Operations
	Pre-transaction Phase
	Transactional File System Operation
	Post Transaction

	Subtree Operations
	Handling Failed Subtree Operation


	Storing Small Files in the Database
	Extended Metadata
	Results
	Conclusions
	Cross-References
	References
	References




